Schema and Pipeline Inference
On this page
Table and pipeline definitions can be inferred from input files using the following commands:
Using the IGNORE clause with INFER PIPELINE for CSV Files
When inferring data from a CSV file, use the IGNORE <n> LINES clause to ignore the specified number of lines from the beginning of the file.
In the following example, the first two lines from the beginning of the CSV file are ignored.
INFER PIPELINE AS LOAD DATA FS '<path_to_local_file>' IGNORE 2 LINES;
Remarks
When the CSV file contains at least one non-text column, and:
-
The
IGNOREclause is not specified and the first line of the CSV is in text format, the first line is inferred as the header (to assign names to the columns in the SingleStore table) and the following lines are ingested.Otherwise, standard column names ( col0,col1, etc.) are used and all the lines in the CSV are ingested. -
The
IGNOREclause is set to0 LINES, the header is not inferred.Standard column names ( col0,col1, etc.) are used as the header, and all lines in the CSV are ingested. -
The
IGNOREclause is set to a positive integer, for example“n”, and the (n+1)th line of the CSV is in text format, this line is inferred as the header (to assign names to the columns in the SingleStore table), and the following lines are ingested.Otherwise, standard column names ( col0,col1, etc.) are used and lines after the ( n)th line in the CSV are ingested.
When the CSV file contains only text columns, and:
-
The
IGNOREclause is either not specified or set to0 LINES, standard column names (col0,col1, etc.) are used as the header (to assign names to the columns in the SingleStore table) and all lines in the CSV are ingested. -
The
IGNOREclause is set to a positive integer, for example“n”, and the first line is a legitimate line (having a consistent number of fields as the rest of the data), then the parser will infer the first line as the header.Otherwise, standard column names ( col0,col1, etc.) are used as the header, and all lines below the ( n)th line are ingested.
Generate an Avro File
An Avro file can be generated that matches the schema of the following CREATE TABLE statement.
CREATE TABLE books(Id INT,Name TEXT,NumPages INT,Rating DOUBLE,Publish_date DATETIME);
Create and activate a Python virtual environment to use for generating the code and install the avro package.
python3 -m venv /path/to/virtual_environment
source /path/to/virtual_environment/bin/activate
pip3 install avroAvro schemas are defined in JSON.books table schema.books..
{"namespace": "books.avro","type": "record","name": "Book","fields": [{"name": "id", "type": "int"},{"name": "name", "type": "string"},{"name": "num_pages", "type": "int"},{"name": "rating", "type": "double"},{"name": "publish_timestamp", "type": "long","logicalType": "timestamp-micros"} ]}
The timestamp-micros is a logical type in Avro that annotates an Avro int as defined in the Avro specification.
The following Python code creates an Avro file named books. that contains data matching the structure of the books table.
Either run the following code in the Python interpreter or save this code to a file named create_.
import avro.schemafrom avro.datafile import DataFileWriterfrom avro.io import DatumWriterimport datetime as dtschema = avro.schema.parse(open("books.avsc","rb").read())day1 = int(dt.datetime.fromisoformat('2023-04-05 12:00').timestamp()*1000*1000)day2 = int(dt.datetime.fromisoformat('2022-11-28 12:00').timestamp()*1000*1000)day3 = int(dt.datetime.fromisoformat('2020-06-02 12:00').timestamp()*1000*1000)writer = DataFileWriter(open("books.avro","wb"), DatumWriter(), schema)writer.append({"id": 1, "name": "HappyPlace", "num_pages": 400,"rating":4.9, "publish_timestamp":day1})writer.append({"id": 2, "name": "Legends & Lattes", "num_pages": 304,"rating":4.9, "publish_timestamp":day2})writer.append({"id": 3, "name": "The Vanishing Half", "num_pages": 352,"rating":4.9, "publish_timestamp":day3})writer.close()
If the code is in a file, navigate to the directory containing the Python script and run it to generate the Avro file.
cd /path/to/avro-scriptpython3 create_avro_file.py
After the Avro file is created, move it to the desired location for loading, such as an Amazon S3 bucket.
Examples
Infer Headers When All Columns are Strings
If all non-ignored lines in a CSV file contain only text, SingleStore cannot automatically detect a header.col0, col1, col2, etc.books.:
Id,Name,NumPages,Rating,PublishDate
1,HappyPlace,400,4.9,2023-04-05
2,Legends & Lattes,304,4.9,2022-11-28
3,The Vanishing Half,352,4.9,2020-06-02Run the following command without header detection:
INFER PIPELINE AS LOAD DATA FS 'books.csv' FORMAT CSV;
As a result, column names are auto-generated as col0, col1, col2, col3, and col4.
Run the following command with header detection enabled:
INFER PIPELINE AS LOAD DATA FS 'books.csv' FORMAT CSV HEADER_DETECTION ON;The first line is treated as the header.Id, Name, NumPages, Rating, PublishDate.
Using AS JSON
The following example demonstrates how to use INFER PIPELINE with the AS JSON keyword with a data file in Avro format stored in an AWS S3 bucket.INFER TABLE can be used in a similar manner.
This example uses data that conforms to the schema of the books table, as shown in the following.
{"namespace": "books.avro",
"type": "record",
"name": "Book",
"fields": [
{"name": "id", "type": "int"},
{"name": "name", "type": "string"},
{"name": "num_pages", "type": "int"},
{"name": "rating", "type": "double"},
{"name": "publish_timestamp", "type": "long",
"logicalType": "timestamp-micros"} ]}Refer to Generate an Avro File for an example of generating an Avro file that conforms to this schema.
The following example generates a pipeline and table definition by scanning the specified Avro file and inferring the schema from selected rows.
INFER PIPELINE AS LOAD DATA S3's3://data_folder/books.avro'CONFIG '{"region":"<region_name>"}'CREDENTIALS '{"aws_access_key_id":"<your_access_key_id>","aws_secret_access_key":"<your_secret_access_key>","aws_session_token":"<your_session_token>"}'FORMAT AVROAS JSON;
{"pipeline_definition":
{"name":"infer_example_pipeline",
"connection_string":"s3://data-folder/books.avro",
"link":null,"source_type":"S3",
"config":"{\"region\":\"us-west-2\"}",
"credentials":"{\n
\"aws_access_key_id\":\"your_access_key_id\",\n
\"aws_secret_access_key\":\"your_secret_access_key\",\n
\"aws_session_token\":\"your_session_token\"}",
"batch_interval":2500,
"resource_pool":null,
"max_partitions_per_batch":null,
"max_retries_per_batch_partition":null,
"enable_out_of_order_optimization":false,
"aggregator_pipeline":false,
"transform":null,"load_error_policy":null,
"dup_key_policy":null,
"table":"infer_example_table",
"procedure":null,
"data_format":"AVRO",
"with_temporal_conversion":false,
"avro_schema":null,
"time_zone":null,
"avro_schema_registry_url":null,
"fields_terminated_by":null,
"fields_enclosed_by":null,
"fields_escaped_by":null,
"lines_terminated_by":null,
"lines_starting_by":null,
"extended_null":null,
"enclosed_null":null,
"trailing_nullcols":null,
"null_defined_by":null,
"ignore_lines":null,
"column_list":[
"`id`","`name`",
"`num_pages`",
"`rating`",
"`publish_date`"],
"json_paths":[["id"],["name"],["num_pages"],["rating"],["publish_date"]],
"column_defaults":[null,null,null,null,null],
"where_clause":null,"set_clause":null,
"on_duplicate_key_update":null,
"kafka_key_start_index": 0,
"kafka_key_format":null,
"stop_on_error":null,
"enable_offsets_metadata_gc":false,
"gc_timestamp":0,"create_time":1716313589,
"alter_time":0,"cookie":null},
"table_definition":
{"name":"infer_example_table",
"columns":[
{"name":"`id`",
"type":{"sql_text":"int(11) NOT NULL",
"base_type":"INT",
"nullable":false,
"collation":null,
"length":11,
"precision":null,
"scale":null,
"signed":true,
"possible_values":null},
"default":null},
{"name":"`name`",
"type":{"sql_text":"longtext CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL",
"base_type":"LONGTEXT",
"nullable":false,
"collation":"utf8_general_ci",
"length":null,"precision":null,
"scale":null,"signed":null,
"possible_values":null},
"default":null},
{"name":"`num_pages`",
"type":{"sql_text":"int(11) NOT NULL",
"base_type":"INT",
"nullable":false,
"collation":null,
"length":11,
"precision":null,
"scale":null,
"signed":true,
"possible_values":null},
"default":null},
{"name":"`rating`",
"type":{"sql_text":"double NULL",
"base_type":"DOUBLE",
"nullable":true,
"collation":null,
"length":null,
"precision":null,
"scale":null,
"signed":true,
"possible_values":null},
"default":null},
{"name":"`publish_date`",
"type":{"sql_text":"bigint(20) NOT NULL",
"base_type":"BIGINT",
"nullable":false,
"collation":null,
"length":20,
"precision":null,
"scale":null,
"signed":true,
"possible_values":null},
"default":null}],
"indexes":[]}}Related Topics
Last modified: November 14, 2025