createIndexes
On this page
Creates indexes on MongoDB® collections.kaiIndexOptions parameter.
To create multikey indexes, refer to Multikey Indexes.
Syntax
{"createIndexes": "<collection_name>","indexes": [{ "name": "<index_name>","key": { "<path_to_property>": "vector" },"kaiIndexOptions": {"index_type": "string""dimensions": <integer_value>,// other fields relevant to each index type }} ] }
Arguments
|
Field |
Type |
Requirement |
Description |
|---|---|---|---|
|
|
String |
Required |
The collection for which the index is created. |
|
|
JSON array |
Required |
An array that specifies the index to create. |
|
|
String |
Required |
A name for the vector index. |
|
|
JSON object |
Required |
Specifies index options for the vector index. |
Remarks
-
The
createIndexescommand creates an index on the specified field in a collection using a persisted computed column within the same collection. -
SingleStore recommends creating collections (or tables) before creating a vector index.
You must specify the field that holds the vector embeddings while creating the collection. Here's a sample syntax: db.createCollection("<collection_name>",columns= [{'id': '<vector_field_name>', 'type': "VECTOR(<vector_dimension>, <type>) NOT NULL"}])Refer to createCollection for more information.
-
If the specified collection does not exist, it is created along with the required structures.
For example: db.runCommand({createIndexes: "sampleCollection",indexes: [{ key: { "sampleCollection.vectorField": "vector" },name: "searchVector_IVF_EUC",kaiIndexOptions:{ "index_type":"IVF_FLAT","nlist":5,"nprobe":1,"metric_type": "EUCLIDEAN_DISTANCE","dimensions": 2 } }]} )DESC sampleCollection;+-------------------------------+----------------+------+-----+---------+----------+ | Field | Type | Null | Key | Default | Extra | +-------------------------------+----------------+------+-----+---------+----------+ | _id | bson | NO | | NULL | | | _more | bson | NO | | NULL | | | $_id | longblob | YES | UNI | NULL | computed | | $sampleCollection.vectorField | vector(2, F32) | NO | MUL | NULL | computed | +-------------------------------+----------------+------+-----+---------+----------+ -
Use the
index_andtype dimensionsfields in thekaiIndexOptionsparameter to specify the type of vector index and the dimension of the vector, respectively. -
You can specify supported Index Options in the
kaiIndexOptionsparameter for each index type.The specified values are set as defaults for the respective index search parameters.
Multikey Indexes
SingleStore implements multikey indexes as Multi-Value Indexes.
To create a multi-value index, use the createIndex command as:
db.<collection>.createIndex({"<path>":"multi_value"})
where path is the path to a property in the BSON document to index.
db.users.createIndex({"addresses.city":"multi_value"})
Remarks
-
Multi-value index is supported with
$eqand$inwithinfindor$match, and optionally within a tree of$and,$or, or$elemMatchoperation. -
A multi-value index can neither be a unique index nor have a compound key.
Example
The following example shows how to create a vector index using the createIndexes command.
db.runCommand({createIndexes: "exampleCollection",indexes: [{ key: { "exampleCollection.vectorField": "vector" },name: "searchVector_IVF_EUC",kaiIndexOptions:{ "index_type":"IVF_FLAT","nlist":5,"nprobe":1,"metric_type": "EUCLIDEAN_DISTANCE","dimensions": 2 } }]} )
Use the db. command to view existing indexes on a collection.
db.exampleCollection.getIndexes()
[ { v: 2, key: { _id: 1 }, name: '_id_' },
{ v: 2,
key: { 'exampleCollection.vectorField': 'vector' },
name: 'searchVector_IVF_EUC',
kaiSearchSpec:
{ nlist: 5,
nprobe: 1,
index_type: 'IVF_FLAT',
metric_type: 'EUCLIDEAN_DISTANCE',
dimensions: 2 } } ]References
Last modified: June 5, 2025