MIN

Returns the lowest value observed in all rows in an aggregation.

Lowest is determined by the collation rules of the data passed in.

May be used as a window function and with the frame clause.

Note

This aggregate function is not to be confused with LEAST, which is a non-aggregate function returning the lowest value in its list of arguments.

Syntax

Aggregate Function

MIN ( expression )

Window Function & Window Frame Clause

MIN(expr) [ OVER ( [ PARTITION BY expr ] [ ORDER BY expr [<window_frame>] ] )]

Arguments

  • expression: any expression. This may be a column name, the result of another function, or a math operation.

Return Type

The lowest value, in the type of the input.

Examples

CREATE TABLE player_scores(player_name VARCHAR(50), player_id VARCHAR(10), 
    1st_qtr_score DECIMAL(5,2), 2nd_qtr_score DECIMAL(5,2), 
    3rd_qtr_score DECIMAL(5,2), 4th_qtr_score DECIMAL(5,2), 
    yearly_total AS 1st_qtr_score + 2nd_qtr_score + 3rd_qtr_score + 4th_qtr_score PERSISTED DECIMAL(5,2));
INSERT INTO player_scores VALUES
    ('Steve', '119','22.50','72.00', '63.00', '45.00'),
    ('Jack', '432', '90.10', '78.00','88.20', '92.20'),
    ('Jim', '779','75.00', '68.90','55.70', '72.00'), 
    ('Eve', '189','91.50', '88.10', '95.00', '94.50'),
    ('Shelia','338', '75.60', '72.00', '81.10', '78.40'),
    ('June', '521', '81.00', '87.30','76.80','82.20'),
    ('Martin', '674','98.80', '95.10', '88.00', '96.40');

Aggregate Function

SELECT MIN(player_id) FROM player_scores;
+-----------------+
| MIN (player_id) |
+-----------------+
| 119             |
+-----------------+
SELECT MIN(player_name) FROM player_scores;
+------------------+
| MIN(player_name) |
+------------------+
| Eve              |
+------------------+

Window Function

SELECT player_name, 1st_qtr_score, 2nd_qtr_score, MIN(2nd_qtr_score) 
OVER (partition by 1st_qtr_score) FROM player_scores ORDER BY 2nd_qtr_score, 1st_qtr_score;
+-------------+---------------+---------------+-----------------------------------+
| player_name | 1st_qtr_score | 2nd_qtr_score | MIN(2nd_qtr_score)                |
|             |               |               | OVER (partition by 1st_qtr_score) |
+-------------+---------------+---------------+-----------------------------------+
| Jim         |         75.00 |         68.90 |                             68.90 |
| Steve       |         22.50 |         72.00 |                             72.00 |
| Shelia      |         75.60 |         72.00 |                             72.00 |
| Jack        |         90.10 |         78.00 |                             78.00 |
| June        |         81.00 |         87.30 |                             87.30 |
| Eve         |         91.50 |         88.10 |                             88.10 |
| Martin      |         98.80 |         95.10 |                             95.10 |
+-------------+---------------+---------------+-----------------------------------+
CREATE TABLE tick_table(TIMESTAMP DATETIME(6), symbol VARCHAR(5), comp_name VARCHAR (30), price NUMERIC(18,4));
INSERT INTO tick_table VALUES('2022-11-18 10:55:36.000000','STC','SomeTechCo', 100.00),
('2022-11-18 10:55:37.000000','STC','SomeTechCo', 102.00),
('2022-11-18 10:55:42.000000', 'STC', 'SomeTechCo', 105.00),
('2022-11-18 10:55:48.000000', 'STC', 'SomeTechCo', 101.00),
('2022-11-18 10:56:03.000000', 'STC', 'SomeTechCo', 99.00),
('2022-11-18 10:55:42.000000', 'AME', 'ACME', 198.00),
('2022-11-18 10:55:50.000000', 'AME', 'ACME', 208.00),
('2022-11-18 10:55:52.000000', 'AME', 'ACME', 210.00),
('2022-11-18 10:55:55.000000', 'AME', 'ACME', 211.00),
('2022-11-18 10:55:52.000000', 'OCO', 'OnCallCo', 21.00),
('2022-11-18 10:55:55.000000', 'OCO', 'OnCallCo', 22.00),
('2022-11-18 10:55:57.000000', 'OCO', 'OnCallCo', 21.00),
('2022-11-18 10:56:00.000000', 'OCO', 'OnCallCo', 23.00),
('2022-11-18 10:56:03.000000', 'OCO', 'OnCallCo', 24.00);
SELECT TIMESTAMP, symbol, price, MIN(price) OVER (PARTITION BY symbol)
FROM tick_table GROUP BY TIMESTAMP;
+----------------------------+--------+----------+---------------------------------------+
| TIMESTAMP                  | symbol | price    | MIN(price) OVER (PARTITION BY symbol) |
+----------------------------+--------+----------+---------------------------------------+
| 2022-11-18 10:55:50.000000 | AME    | 208.0000 |                              208.0000 |
| 2022-11-18 10:55:55.000000 | OCO    |  22.0000 |                               21.0000 |
| 2022-11-18 10:55:52.000000 | OCO    |  21.0000 |                               21.0000 |
| 2022-11-18 10:56:00.000000 | OCO    |  23.0000 |                               21.0000 |
| 2022-11-18 10:55:57.000000 | OCO    |  21.0000 |                               21.0000 |
| 2022-11-18 10:55:42.000000 | STC    | 105.0000 |                               99.0000 |
| 2022-11-18 10:55:37.000000 | STC    | 102.0000 |                               99.0000 |
| 2022-11-18 10:55:48.000000 | STC    | 101.0000 |                               99.0000 |
| 2022-11-18 10:55:36.000000 | STC    | 100.0000 |                               99.0000 |
| 2022-11-18 10:56:03.000000 | STC    |  99.0000 |                               99.0000 |
+----------------------------+--------+----------+---------------------------------------+

Window Frame Clause

SELECT player_name, 1st_qtr_score, 2nd_qtr_score, 
min(1st_qtr_score) OVER (ORDER BY 1st_qtr_score, 2nd_qtr_score ROWS between 1 PRECEDING and CURRENT ROW)
FROM player_scores
ORDER BY player_name, 1st_qtr_score, 2nd_qtr_score;
+-------------+---------------+---------------+-------------------------------------------+
| player_name | 1st_qtr_score | 2nd_qtr_score | min(1st_qtr_score) OVER                   |
|             |               |               | (ORDER BY 1st_qtr_score, 2nd_qtr_score    |
|             |               |               | ROWS between 1 PRECEDING and CURRENT ROW) |
+-------------+---------------+---------------+-------------------------------------------+
| Eve         |         91.50 |         88.10 |                                     90.10 |
| Jack        |         90.10 |         78.00 |                                     81.00 |
| Jim         |         75.00 |         68.90 |                                     22.50 |
| June        |         81.00 |         87.30 |                                     75.60 |
| Martin      |         98.80 |         95.10 |                                     91.50 |
| Shelia      |         75.60 |         72.00 |                                     75.00 |
| Steve       |         22.50 |         72.00 |                                     22.50 |
+-------------+---------------+---------------+-------------------------------------------+

Last modified: April 4, 2023

Was this article helpful?

Verification instructions

Note: You must install cosign to verify the authenticity of the SingleStore file.

Use the following steps to verify the authenticity of singlestoredb-server, singlestoredb-toolbox, singlestoredb-studio, and singlestore-client SingleStore files that have been downloaded.

You may perform the following steps on any computer that can run cosign, such as the main deployment host of the cluster.

  1. (Optional) Run the following command to view the associated signature files.

    curl undefined
  2. Download the signature file from the SingleStore release server.

    • Option 1: Click the Download Signature button next to the SingleStore file.

    • Option 2: Copy and paste the following URL into the address bar of your browser and save the signature file.

    • Option 3: Run the following command to download the signature file.

      curl -O undefined
  3. After the signature file has been downloaded, run the following command to verify the authenticity of the SingleStore file.

    echo -n undefined |
    cosign verify-blob --certificate-oidc-issuer https://oidc.eks.us-east-1.amazonaws.com/id/CCDCDBA1379A5596AB5B2E46DCA385BC \
    --certificate-identity https://kubernetes.io/namespaces/freya-production/serviceaccounts/job-worker \
    --bundle undefined \
    --new-bundle-format -
    Verified OK