DATE_ TRUNC
On this page
Truncates a timestamp using the specified date part.
Returns a truncated timestamp where the date part is used as the level of precision.
Syntax
DATE_TRUNC('datepart', timestamp)
Arguments
-
'datepart'
: The date part used to truncate thetimestamp
, which can be one of the following levels of precision:-
year
-
quarter
-
month
-
week
-
day
-
hour
-
minute
-
second
-
microseconds
-
-
timestamp
: The timestamp to truncate, either as a column ofTIMESTAMP
type or an expression that evaluates toTIMESTAMP
.
Note
When datepart
is set to week
, the timestamp
specified is truncated to start on the first day of the week, which is Monday in SingleStore.
Return Type
TIMESTAMP
Example 1: Hours and Minutes
Truncate a timestamp to the hour
date part:
SELECT DATE_TRUNC('hour', '2016-08-08 12:05:31');
+-------------------------------------------+
| DATE_TRUNC('hour', '2016-08-08 12:05:31') |
+-------------------------------------------+
| 2016-08-08 12:00:00 |
+-------------------------------------------+
Truncate a timestamp to the minute
date part:
SELECT DATE_TRUNC('minute', '2016-08-08 12:05:31');
+---------------------------------------------+
| DATE_TRUNC('minute', '2016-08-08 12:05:31') |
+---------------------------------------------+
| 2016-08-08 12:05:00 |
+---------------------------------------------+
1 row in set (0.07 sec)
Example 2: Months and Weeks
Consider the following example table named dt_
:
SELECT * FROM dt_orders;
+----+-------------+--------------+---------------------+
| id | customer_id | order_amount | order_time |
+----+-------------+--------------+---------------------+
| 5 | 677222 | 19973.03 | 2017-01-12 00:00:00 |
| 2 | 656590 | 13666.29 | 2017-01-05 00:00:00 |
| 4 | 941937 | 720.11 | 2017-01-13 00:00:00 |
| 1 | 656590 | 6700.55 | 2017-01-18 00:00:00 |
| 3 | 941937 | 16478.14 | 2017-01-06 00:00:00 |
+----+-------------+--------------+---------------------+
5 rows in set (0.10 sec)
To get the sum of order_
for the month of January 2017:
SELECT DATE_TRUNC('month', order_time), SUM(order_amount)FROM dt_ordersGROUP BY 1;
+---------------------------------+-------------------+
| DATE_TRUNC('month', order_time) | SUM(order_amount) |
+---------------------------------+-------------------+
| 2017-01-01 00:00:00.000000 | 57538.12 |
+---------------------------------+-------------------+
To get the order_
for each week in January 2017:
SELECT DATE_TRUNC('week', order_time), SUM(order_amount)FROM dt_ordersGROUP BY 1ORDER BY 1;
+--------------------------------+-------------------+
| DATE_TRUNC('week', order_time) | SUM(order_amount) |
+--------------------------------+-------------------+
| 2017-01-02 00:00:00.000000 | 30144.43 |
| 2017-01-09 00:00:00.000000 | 20693.14 |
| 2017-01-16 00:00:00.000000 | 6700.55 |
+--------------------------------+-------------------+
To get the order_
for each week in January 2017 with more descriptive column names:
SELECT CAST(DATE_TRUNC('week', order_time) AS DATE) AS order_week, SUM(order_amount) AS sum_order_week_amountFROM dt_ordersGROUP BY 1ORDER BY 1;
+------------+-----------------------+
| order_week | sum_order_week_amount |
+------------+-----------------------+
| 2017-01-02 | 30144.43 |
| 2017-01-09 | 20693.14 |
| 2017-01-16 | 6700.55 |
+------------+-----------------------+
Remarks
The DATE_
function supports improved segment elimination when used in WHERE
clauses.
SELECT ... FROM table_name WHERE DATE_TRUNC('year', column_name) = '2022-01-01 00:00:00';
Last modified: May 31, 2023